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Abstract. A theory of the spin susceptibility of conduction electrons is derived using a 
temperature Green function formalism in the presence of an electron-phonon interaction. 
It has been shown that the modifications to the spin susceptibility brought about by con- 
sidering the magnetic field dependence of the electron self-energy are cancelled by the mass 
enhancement due to the electron-phonon interaction. However, by considering both the 
electron-electron and electron-phonon interactions we show that the exchange enhance- 
ment parameter (CY) due to the electron-electron interaction changes to a(1 + y)-I where y 
is the electron-phonon mass enhancement parameter. In view of the present controversy 
concerning the role of the electron-phonon interaction in the magnetism of solids, our work 
is expected to pave the way for a better quantitative understanding of the effect. 

1. Introduction 

It is well known that the electron-phonon interaction plays an important role in the study 
of different solid state properties, the most remarkable of these being the explanation of 
the low-temperature superconductivity. However, the role of the electron-phonon 
interaction in the magnetism of solids is not understood completely and consequently 
has remained controversial (Herring 1966, Joshi and Rajagopal 1968, Enz and Mathias 
1979, Fay and Appel1979, Grimvalll981, Pickett 1982, Zvrev and Silin 1987, Kim 1976, 
1979, 1981, 1982, 1984, Kim and Tanaka 1986, 1988). The idea that the Pauli spin 
susceptibility is not affected by the electron-phonon interaction was first proposed by 
Herring (1966), and this was later supported by Grimvall (1981) and Pickett (1982). 
There have also been some attempts to assess the role of the electron-phonon interaction 
in itinerant electron magnetism. The findings are, however, not unanimous. For example 
Enz and Mathias (1979) have proposed that the electron-phonon interaction affects the 
Stoner factor and is responsible for the ferromagnetism of ZrZn,. On the other hand, 
Fay and Appel(l979) have proposed that the electron-phonon correction to the Stoner 
factor is of the order of (m/M)’’’, where m and M are the electron and atomic masses, 
respectively, and hence negligible. 

Kim and co-workers have investigated extensively the role of the electron-phonon 
interaction in itinerant electron magnetism. They found that in the paramagnetic state 
of transition metals the electron-phonon interaction is the dominant mechanism of the 
temperature dependence of the magnetic susceptibility (Kim 1981, 1982, 1984). They 
also showed that in the ferromagnetic state the electron-phonon interaction affects the 
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spontaneous magnetisation by as much as pB per atom (Kim and Tanaka 1986). These 
results were obtained from their earlier work on the magnetisation dependence of the 
phonon frequency arising from changes in the electronic screening of ion-ion inter- 
actions (Kim 1976, 1979). 

It is clear from the foregoing discussion that the role of the electron-phonon inter- 
action in the magnetism of solids still remains inconclusive. Different authors have 
emphasised different aspects of this problem, as outlined in the preceding paragraph. 
In this paper, therefore, we present a theory of electron-phonon interaction effects on 
the spin susceptibility of conduction electrons. Our work is distinguished from previous 
work in the sense that we consider a temperature Green function technique and solve 
an integral equation for the self-energy of electrons in the presence of electron-phonon 
interactions and a magnetic field. Spin-orbit interactions are also considered. This is 
an extension of a procedure adopted to derive first-principles theories of magnetic 
susceptibility (Misra et a1 1982, Tripathi 1986, 1987), Knight shift (Tripathi et a1 1981, 
1982, 1987, Tripathi 1985a) and nuclear spin-spin interactions (Tripathi 198%) in the 
presence of electron-electron interactions. 

Furthermore, since the inertia of the ions is important, the interaction between 
electrons which is mediated by phonons is not instantaneous but retarded. This makes 
Green functions a particularly useful vehicle for describing them. 

In 9 2  we briefly review the general expression for the effective Pauli spin sus- 
ceptibility in the presence of many-body interactions. Section 3 discusses the solution of 
the electron self-energy equations in the presence of electron-phonon interactions and 
a magnetic field. In 8 4 we briefly discuss the mass enhancement due to the electron- 
phonon interaction in the light of our theory. Finally, § 5 concludes the work with a brief 
summary. 

2. Effective spin susceptibility of conduction electrons 

The effective Pauli spin susceptibility in the presence of many-body interactions (Misra 
et all982) is given by the expression 

where 
m 
h 

U X vv 'r - VkC"(k ,  E )  
h 

= ( p  + hk)  + - 4" 
F "  = 0' + (2/gpB) Z""  
J' E 0' + (l/g/k.lg) 3 " U .  

The 2 are defined through the expression (Misra et a1 1982) 

2 ( k , B ,  Erik) = E o ( k ,  Erik) -k B'"z"'(k, Erik) + Bp'B"z2'upr'"(k, Erik) + . . .. (2.5) 

The other symbols are as follows: is an antisymmetric tensor of third rank and we 
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follow the Einstein summation convention, f ' (Enk )  is the energy derivative of the Fermi 
function f (Enk) ;  n ,  m, q are band indices and the p are the spin indices (repeated band 
and spin indices here and elsewhere in the paper imply summation), pB is the Bohr 
magneton; the U are the Pauli spin matrices and Em, = E,(k) - En(k);  F and J are the 
renormalised spin vertices in the presence of many-body effects. The matrix elements 
occurring in equation (2.1) are taken between the periodic parts of the Bloch functions 
for different bands. 

In the absence of many-body effects, xf" reduces to the expression given by Misra 
and Kleinman (1972), and if the spin-orbit interaction is neglected it would reduce to 
the Pauli paramagnetic susceptibility of the conduction electrons in a solid. 

Using equations (2.3) and (2.4), equation (2.1) can be split into two parts: 

k \ 

Equation (2.6) can further be rewritten as 

where 
x'1" s = xf,? + Xf,; 

In equation (2.7) we have separated the many-body contribution to the spin susceptibility 
and lumped it in xf,y2. However, equation (2.9) is not in a form in which computations 
can be performed. This is because of the presence of the electron self-energy term. In 
order to express equation (2.7) in a physically meaningful form, we have to solve the 
integral equation for z l , p .  This has been done previously (Tripathi et a1 1982, Misra et 
a1 1982) in the case of exchange interactions between electrons. In the following section 
we solve an integral equation forzl-p in the presence of the electron-phonon interaction. 

3. Self-energy equations 

The problem of treating the retarded nature of the phonon interaction is a non-trivial 
one. However, the reason that one can give an essentially exact treatment of the problem 
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Figure 1. Lowest-order contribution to the self-energy Z(k,  c,). The full line represents the 
electron Green function G(k‘ ,  tr) .  The wavy curve represents the phonon propagator 
D(k - k ’ ,  5, - ti.) and the full circles stand for the coupling constant M .  

follows from an important discovery by Migdal (1958) in his treatment of the coupled 
electron-phonon system in normal metals. In non-metals the electron and lattice motions 
are separated by using the Born-Oppenheimer approximation. Because of the smallness 
of m / M ,  where m and M are the electronic and ionic masses, respectively, the electrons 
move much faster than the ions. The electrons therefore move in a potential depending 
on the instantaneous positions of the ions while the ions are affected by an average 
potential due to the electrons. Mathematically, the approximation results in an expan- 
sion ( m / M ) 1 / 2  and is valid because of the smallness of u / A E  where (o is a phonon energy 
and A E  the energy difference between the electron states the phonon can connect. In 
metals, however, the ratio of energies is no longer small because electrons can make 
transitions near the Fermi surface with AE tending to zero. However, Migdal(l958) has 
shown that one can calculate the one-electron self-energy to an accuracy of order (m/ 
M)l’’ - lo-’ by what amounts to second-order self-consistent perturbation theory. This 
remarkable result does not depend on the strength of the electron-phonon coupling but 
rather depends on the existence of a small parameter (m/M)’/’ in the problem. 

From Migdal’s theorem it suffices to consider the lowest-order diagram shown in 
figure 1 when calculating the self-energy X(k ,  cl). Here the phonon propagator appears 
only once. Then we can write (Schrieffer 1964) 

where Mkkr is the electron-phonon coupling function, D is the phonon propagator, G is 
the exact one-electron propagator and 

in which p is the chemical potential and /3 = ( kBT) - ’ .  In the presence of a magnetic field 
both the electronic propagator and the self-energy are field dependent. Ignoring the 
field dependence of the phonon propagator, we have 
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Here 
ha, = Ea/3phP hm' = eBP12fic (3.5) 

and Go is the electron propagator in the absence of the magnetic field, and is diagonal 
in the periodic part of the Bloch function. Using equations (2.5) and (3.4) in equation 
(3.3), and comparing the coefficients of BP, we have 

(3.7) 
Using the completeness properties of the u , , k p  and replacing the phonon propagator D 
by the bare phonon propagator Do,  where 

= 2 f i w k - k ' / [ ( E n k  - c / ' ) 2  - ( h 0 k - k ' ) 2 ]  > (3.8) 

we can write 

where, as before, repeated band and spin indices imply summation. The frequency 
summations on the left can be carried out by using Luttinger-Ward (1960) identity 

(3.10) 

where the contour r encircles the imaginary axis in an anticlockwise direction. Sub- 
stituting equation (3.10) in equation (3.9) and neglecting the terms proportional to f ,  
which are not expected to be important for the intraband matrix element, we obtain 
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Following an average interaction ansatz in which the self-energy is independent of k ,  we 
obtain 

zkLnp’(k, E n )  ( 2 k L n p ’ ( k ,  E n )  + i p B g 6 ( k ) ) P n ( k )  (3.12) 

where 

(3.13) 

The apparent singularity in equation (3.13) is due to the fact that, in evaluating frequency 
summations, we have considered only the real part of the energy. The imaginary part is 
proportional to the lifetime, which is not of interest here. From equation (3.12) we have 

(3.14) gin (k)  O g p ,  np’  g;n  (k)o&’, np f ’ (Erik >. B n  ( k )  
1 - Bn(k> 

i k L n p ,  = 2p.B 

Substituting equation (3.14) in equation (2.9) we have 

g;n ( k ) o ~ p , n p ’  g;n  ( k ) a ; p ’ .  n p  f ’  (Erik). (3.15) Xf,; = -1 B n  ( k )  41 + S,v>P i  T 1 - 

Now, from equations ( 2 . 7 ) ,  (2.8) and (3.15) we obtain 

xf” = -1 8(1 + 6 p v ) P i  1 - B n ( k )  g!n ( k )  O!p, np’ g,”n ( k )  

Since only the diagonal components are of interest, we have 

1 
np f ’ ( E n k  1. (3.16) 

1 
X f P  = -1 4 P B  2 g g n  ( k )  O&,tzp’gin ( k )  @ p ’ ,  n p  f ’ ( E  nk 1. (3.17) 

Thus, by considering the magnetic field dependence of the self-energy, we have seen 
thatxfp is modified by afactor (1 - /3n(k))-’ .  In order to see how the modification affects 
the susceptibility, let us write equation (3.13) in the form 

k - p n ( k )  

P n ( k >  = - 2 u n n ( k ,  k ’ ) f ’ ( E n k ’ )  (3.18) 

where unn(k, k’) is the effective interaction between electrons mediated by phonons 
and is 

k 

(3.19) 

Unlike the case of exchange interactions between electrons, which are positive, unn(k, k ’ )  
can be either positive or negative depending on whether E,, - Erik, is greater or less than 
bok- k ’ .  

4. Mass renormalisation 

The electron-phonon mass enhancement has different effects on different properties 
(Grimvall 1981). Thus far, we have only partially considered its effects on the spin 
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susceptibility. Let the renormalised energy, in the presence of the electron-phonon 
interaction, be ER and 

E t k  = E n k  + z o ( k ,  Erik) (4.1) 
where 

Performing the frequency summation as per the Luttinger-Ward prescription (equation 
(3.10)), we obtain 

I Mnk,nk'  1 * 2hw k -  k' f ( E n k '  

k' (Erik, - - ( h o k - k ' ) * '  
E f k  = E n k  - 

Since the electron states near the Fermi surface are of interest, we can write 

Replacing VkEtkC by V k E n k ,  we obtain 

VkE!k = V k E n k ( l  - y(k)) 

where 

Since the density of states is proportional to I V k E I - l ,  we have to first order in y(k) 

N R ( E n k )  = N ( E n k )  (l  + y ( k ) )  (4.7) 

where NR is the renormalised density of states and Nis the density of states in the absence 
of the electron-phonon interaction. The increase in the density of states implies a change 
in the effective mass by the same factor: 

mel-ph = m(l + y(k)) (4 * 8) 

where meleph is the renormalised mass due to the electron-phonon interaction. Now we 
shall further simplify y(k). Since the electron-phonon interaction is short ranged we can 
consider lMnk,flk'12 as a constant, \MI2. Again, since in the low-temperature limit h w k - k ,  

is greater than Enk - Enkn, we replace the phonon frequency by an average frequency, 
say the Debye frequency wD. In this limit, the value of y ( k )  averaged over the Fermi 
surface is given by 

r = IMI2 N ( E F ) I f i W D  (4.9) 

which is a positive quantity. Thus 7 is the mass enhancement factor. 
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In order to see the effect of the mass renormalisation on xs let us write equation 
(3.17) as 

1 
= -1 4 p B  2 2 g i n  ( k,  O!p, np’ g’in ( k )  a&’ , np V k f ( E  Fk ) ( VkE:k ) * (4.10) 

Using equations (4.5) and (4.6) in equation (4.10), and assuming V k f ( E F k )  = 
V k f ( E n k ) ,  we obtain 

xy -1 4pB 2 gin(k)o!&,np’ ( k ) g ! n ( k )  O ! p ’ , n p f ’  (Erik). (4.11) 

This is a remarkable result in the sense that the modifications caused in xs due to 
the magnetic field dependence of the electron self-energy are cancelled by the mass 
enhancement. In other words, there is apparently no explicit effect of the electron- 
phonon interaction on the spin susceptibility, except through the modifications of the 
one-electron eigenvalues and eigenfunctions. However, as we shall now see, the picture 
would be different if we consider the combined effects of both the electron-electron and 
electron-phonon interactions. x f p  , in the presence of the electron-electron interaction 
only, is given (Misra et a1 1982) by 

k - p n ( k )  

k 

1 xw = -1 4pB 2 g!n ( W ! p , n p , g ! n  ( W ! p , , n p f ’ ( L C )  (4.12) 
k 1 - an(k)  

where mn(k) is the exchange-enhanced function 

&n(k) = - f i n n ( k ,  k’)f’(Enk’) (4.13) 

where fi is the strength of an average exchange interaction. It is now easy to see that by 
considering both the electron-electron and the electron-phonon interactions in the self- 
energy equations, we would finally obtain 

k’ 

(4.14) 

Replacing Erik by E:k7 and following the procedure used to obtain equation (4.11), we 
obtain 

(4.15) 

where x f p  (0) is the susceptibility in the absence of the electron-electron and electron- 
phonon interactions, and the overbars above a and y denote average values. 

Thus we have seen that the Stoner factor (1 - a)-’ becomes (1 - [ci?/(l + y)]}-’  in 
the presence of the electron-phonon interaction. The apparent modification of x f p  in 
equation (4.15) as distinguished from equation (4.11) arises from the fact that, while 
both the electron-electron and electron-phonon interactions modify the susceptibility 
through the factors (1 - E)-’ and (1 + .J>-’, the mass enhancements are different. While 
the mass enhancement due to the electron-phonon interaction is appreciable and is 
taken into account, the same effect due to the electron-electron interaction is negligible 
and is ignored. Since 7 is a positive quantity, it reduces the exchange-enhancement 
parameter. Furthermore yvaries from a value of about 0.23 in the case of beryllium to 
a value of 1.12 in the case of lead (McMillan 1968). Thus the modification brought about 
by the electron-phonon interaction in the exchange-enhancement parameter appears 
to be significant. However, the extent to which the spin susceptibility is modified depends 
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on both CU and 7. Let us now estimate the effect in a free-electron-like system, sodium. 
The mass enhancement parameter in sodium is about 0.26 and CU is about 0.4 (Kittel 
1976). With these data it is easy to see that the exchange-enhancement parameter is 
affected by about 13%. In general, yvaries by about 20-40% in simple metals. Thus ci? 
would be correspondingly reduced by about 20-30% in these systems. 

Thus far, we have confined our discussion to low temperatures. However, it is 
important to consider how y , (k)  varies with temperature. Let us assume that the elec- 
tron-phonon matrix elements and the phonon frequency are constants. Dropping the 
band index, equation (4.6) can be written as 

Replacing the summation over k' by an integration over energy, we have 

Integrating by parts, we have 

Using the relation (Ziman 1973) 

1 dE@(E)fT(E - ,U) = @(E) d E  + Qn2(k,T)' d~ i 
and assuming N(EkJ) to be equal to N ( p ) ,  we obtain 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

At  low temperatures the second term in the square bracket is neglected and 
hwD * (J?k - p) .  In this limit y ( k )  becomes y(0): 

Y(O) = I M /  2N(p0),'hwD (4.23) 

where po is the Fermi energy. 
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In the high-temperature limit, (Ek - p)  S kBT and consequently (Ek  - p)  S hwD. 
In this limit 

(4.24) 

The second term in the square bracket is small and can be neglected, and since p does 
not differ significantly from po we have 

(4.25) 

which is a very small quantity. At  room temperature T - 8 D  and po - lo2 kBT. Thus the 
mass enhancement at room temperature is of the order of y(0). Thus there is no 
mass enhancement when the temperature is of the order of the Debye temperature and 
beyond. It may be noted that the temperature dependence of the mass enhancement 
has also been considered previously (Grimvalll968,1981, Eliashberg 1963). 

5. Summary and conclusion 

In this paper we have analysed carefully the effect of the electron-phonon interaction 
on the spin susceptibility of conduction electrons. The method is distinguished from 
earlier works in the sense that we have used a temperature Green formalism and solved 
an integral equation for the electron self-energy in the presence of a magnetic field and 
the electron-phonon interaction. The modifications caused due to the magnetic field 
dependence of the electron self-energy are cancelled by the mass enhancement due to 
the electron-phonon interaction. In this aspect, our findings are in agreement with the 
results obtained by Grimvall(l981) and Pickett (1982). However, by considering both 
the electron-electron and electron-phonon interactions, we have shown that the Stoner 
factor is affected by the electron-phonon interactions. Thus whether or not the effect is 
important depends on both the strengths of the exchange interaction among conduction 
electrons and the effective electron-electron interaction mediated by the phonon. We 
have also considered the temperature dependence of the mass enhancement due to the 
electron-phonon interaction. 

In conclusion, we would like to state that the theory can be applied to metals, 
intermetallic compounds and semiconductors with suitable modifications. Furthermore, 
in view of the present controversy regarding the effect of electron-phonon interaction 
in the magnetism of solids, our theory paves the way towards a better quantitative 
understanding of the effect. 
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